Sparse regression for large data sets with outliers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density Estimation with Adaptive Sparse Grids for Large Data Sets

Nonparametric density estimation is a fundamental problem of statistics and data mining. Even though kernel density estimation is the most widely used method, its performance highly depends on the choice of the kernel bandwidth, and it can become computationally expensive for large data sets. We present an adaptive sparse-grid-based density estimation method which discretizes the estimated dens...

متن کامل

Rank regression: an alternative regression approach for data with outliers

Linear regression models are widely used in mental health and related health services research. However, the classic linear regression analysis assumes that the data are normally distributed, an assumption that is not met by the data obtained in many studies. One method of dealing with this problem is to use semi-parametric models, which do not require that the data be normally distributed. But...

متن کامل

Computational techniques for spatial logistic regression with large data sets

In epidemiological research, outcomes are frequently non-normal, sample sizes may be large, and effect sizes are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. I focus on binary outcomes, with the risk surface a smooth function of space, but the development herein is relevan...

متن کامل

Sparse least trimmed squares regression for analyzing high-dimensional large data sets

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version ...

متن کامل

Sparse PCA for High-Dimensional Data With Outliers

A new sparse PCA algorithm is presented which is robust against outliers. The approach is based on the ROBPCA algorithm which generates robust but nonsparse loadings. The construction of the new ROSPCA method is detailed, as well as a selection criterion for the sparsity parameter. An extensive simulation study and a real data example are performed, showing that it is capable of accurately find...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Operational Research

سال: 2021

ISSN: 0377-2217

DOI: 10.1016/j.ejor.2021.05.049